If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2+32a-24=0
a = 6; b = 32; c = -24;
Δ = b2-4ac
Δ = 322-4·6·(-24)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-40}{2*6}=\frac{-72}{12} =-6 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+40}{2*6}=\frac{8}{12} =2/3 $
| R=22.90+0.30m | | 24=3x-10 | | y+1.5=8.4 | | y-(3-2y)=9 | | -5t^2+13t+6=t | | 3a+24=6a=12 | | X(10+3)=10x+2 | | x-5.2=7.8 | | t+3.7=5.5 | | -1+7n=-85 | | 10+3x=15+6 | | F(n)=4n-8 | | 300=40x-0.5x^2-300 | | 4646x57743=374373 | | 10x=3=26 | | d/55=4 | | 16+5y=7y | | 21/24=7/8=48/x | | 140=-5(4x+4) | | (45x+300)-(85x-0.5^2)=300 | | (45x=300)-(85x-0.5^2) | | -2(4+3j)-4=6j | | Y=0.38x+1.55 | | x/0.6=0.3 | | x/0.5=0/3 | | Y=0.35x+2.80 | | v+4+5=17 | | 9x-3(3x-4)=-6 | | -1+3f=-7-5f | | 3/x=4.8/4.5 | | -2(x-1)+2x=2 | | (5x+9)=(2x+13) |